MATH2050C Assignment 5

Deadline: Feb 20, 2024.
Hand in: 3.4 no 7; 3.5 no 3, 5, 9; Supp Ex no. 1.
Section 3.4 no. 4, 6, 8, 9, 11.

Supplementary Problems

1. Can you find a sequence from $[0,1]$ with the following property: For each $x \in[0,1]$, there is subsequence of this sequence taking x as its limit? Suggestion: Consider the rational numbers.
2. Recall that for $a \geq 0, E(a)=\lim _{n \rightarrow \infty}(1+a / n)^{n}$ is well-defined. Show that for a rational $a>0, E(a)=e^{a}$.
3. Let $\left\{x_{n}\right\}$ be a positive sequence such that $a=\lim _{n \rightarrow \infty} x_{n+1} / x_{n}$ exists. Show that $\lim _{n \rightarrow \infty} x_{n}^{1 / n}$ exists and is equal to a.
4. Show that $\lim _{n \rightarrow \infty} \frac{n}{(n!)^{1 / n}}=e$.
5. The concept of a sequence extends naturally to points in \mathbb{R}^{N}. Taking $N=2$ as a typical case, a sequence of ordered pairs, $\left\{\mathbf{a}_{n}\right\}, \mathbf{a}_{n}=\left(x_{n}, y_{n}\right)$, is said to be convergent to a if, for each $\varepsilon>0$, there is some n_{0} such that

$$
\left|\mathbf{a}_{n}-\mathbf{a}\right|<\varepsilon, \quad \forall n \geq n_{0} .
$$

Here $|\mathbf{a}|=\sqrt{x^{2}+y^{2}}$ for $\mathbf{a}=(x, y)$. Show that $\lim _{n \rightarrow \infty} \mathbf{a}_{n}=\mathbf{a}$ if and only if $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$.
6. Bolzano-Weierstrass Theorem in \mathbb{R}^{N} reads as, every bounded sequence in \mathbb{R}^{N} has a convergent subsequence. Prove it. A sequence is bounded if $\left|\mathbf{a}_{n}\right| \leq M, \forall n$, for some number M.

Bolzano-Weierstrass Theorem

Theorem 5.1 (Nested Interval Theorem). Let $I_{j}=\left[a_{j}, b_{j}\right], j \leq 1$, be a sequence of closed intervals satisfying $I_{j+1} \subset I_{j}$. Then $\bigcap_{j} I_{j}=[a, b]$ where $a=\sup _{j} a_{j}$ and $b=\inf _{j} b_{j}$. In particular, the intersection of all I_{j} 's are nonempty.
We refer to the Text for a proof, which is based on Monotone Convergence Theorem.
Theorem 5.2(Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.
Our proof is slightly different from the second proof in Text.
Proof. Let $\left\{x_{n}\right\}$ be a bounded sequence. Assume that it has infinitely many distinct points. (If not, the sequence is a finite set $\left\{a_{1}, a_{2}, \cdots, a_{M}\right\}$ one a_{j} 's must repeatedly appear infinitely many times. You can choose this point to form a constant subsequence.) Fix a closed, bounded interval I_{0} containing the sequence. We divide I_{0} equally into two closed subintervals. Since the sequence has infinitely x_{n} 's, one of these subintervals must contain infinitely many of them. Pick and call it I_{1}. Next, we divide I_{1} equally into two closed subintervals and apply the same principle to pick I_{2}. Repeating this process, we end up with closed intervals $I_{k}, k \geq 1$, with the properties: For $k \geq 1$, (a) $I_{k+1} \subset I_{k}$, (b) the length of I_{k+1} is half that of I_{k}, and (c) there are infinitely points from $\left\{x_{n}\right\}$ sitting inside each I_{k}. Applying Nested Interval Theorem, $\cap_{k=1}^{\infty} I_{k}=\{x\}$. Now, we pick one $\left\{x_{n_{k}}\right\}$ from each I_{k} to form a subsequence. This is possible because there are infinitely many x_{n} 's in each I_{k}. Clearly, $\left\{x_{n_{k}}\right\}$ converges to x.

A point a is called a limit point of the sequence $\left\{x_{n}\right\}$ if it is the limit of some subsequence of $\left\{x_{n}\right\}$. A bounded sequence has at least one limit point according to Bolzano-Weierstrass Theorem. A properly divergent sequence does not have any limit point. This following theorem is the same as Theorem 3.4.9 in Text.

Theorem 5.2. A bounded sequence is convergent if all its convergent subsequences have the same limit.

Proof. Assume that there is only one limit point x. Suppose on the contrary that the sequence does not converge to x. We can find some $\varepsilon_{0}>0$ and $n_{k} \rightarrow \infty$ such that $\left|x_{n_{k}}-x\right| \geq \varepsilon_{0}$. Since $\left\{x_{n_{k}}\right\}$ is bounded, it contains a subsequence $\left\{x_{n_{k_{j}}}\right\}$ which converges to some y satisfying $|y-x|=\lim _{j \rightarrow \infty}\left|x_{n_{k_{j}}}-x\right| \geq \varepsilon_{0}$. Since any subsequence of a subsequence is a subsequence of the original sequence, $\left\{x_{n_{k_{j}}}\right\}$ is again a subsequence of $\left\{x_{n}\right\}$. Thus y is a limit point different from x, contradiction holds.

Let $\left\{x_{n}\right\}$ be a bounded sequence. For each $n \geq 1$, the number

$$
z_{n}=\sup _{k \geq n} x_{k}=\sup \left\{x_{n}, x_{n+1}, x_{n+2}, \cdots\right\},
$$

is a number. It is clear that $\left\{z_{n}\right\}$ is decreasing and bounded from below. By Monotone Convergence Theorem, its limit exists. We call it the limit superior of the sequence of $\left\{x_{n}\right\}$. In notation,

$$
\varlimsup_{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}=\inf \left\{z_{n}\right\}=\inf _{n} \sup _{k \geq n} x_{k}
$$

Similarly, the number

$$
w_{n}=\inf _{k \geq n} x_{k}=\inf \left\{x_{n}, x_{n+1}, x_{n+2}, \cdots\right\}
$$

is a number. It is clear that $\left\{w_{n}\right\}$ is increasing and bounded from above. By Monotone Convergence Theorem, its limit exists. We call it the limit inferior of the sequence of $\left\{x_{n}\right\}$. In notation,

$$
\underline{\lim }_{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} w_{n}=\sup \left\{w_{n}\right\}=\sup _{n} \inf _{k \geq n} x_{k}
$$

Theorem 6.2. For a bounded sequence, its supremum is its largest limit point and its infimum the smallest limit point.

The following proof may be skipped in a first reading.

Proof *. Let b be the supremum of all limit points of $\left\{x_{n}\right\}$ and $a=\lim \sup _{n} x_{n}$. First, we claim that a is itself a limit point. Hence $a \leq b$. To do this we need to produce a subsequence convergence to a. For $\varepsilon=1$, there is some n_{0} such that $\left|z_{n}-a\right|<1$ for all $n \geq n_{0}$. In particular, $\left|z_{n_{0}}-a\right|<1$. Since $z_{n}=\sup \left\{x_{n}, x_{n+1}, x_{n+2}, \cdots,\right\}$, for the same $\varepsilon=1$, there is some $m_{0} \geq n_{0}$ such that $\left|x_{m_{0}}-z_{n_{0}}\right|<1$. Next, by the same reasoning, for $\varepsilon=1 / 2$, there is some $n_{1}>n_{0}$ such that $\left|z_{n_{1}}-a\right|<1 / 2$ and $m_{1} \geq n_{1}$ such that $\left|z_{n_{1}}-x_{m_{1}}\right|<1 / 2$. Continuing this, we obtain $z_{n_{k}}$ and $x_{m_{k}}$ where n_{k} and m_{k} are strictly increasing which satisfy $\left|z_{n_{k}}-a\right|,\left|z_{n_{k}}-x_{m_{k}}\right|<1 / k$. Therefore,

$$
\left|x_{m_{k}}-a\right| \leq\left|x_{m_{k}}-z_{n_{k}}\right|+\left|z_{n_{k}}-a\right|<\frac{1}{k}+\frac{1}{k}=\frac{2}{k}
$$

Letting $k \rightarrow \infty$, by Squeeze Theorem we conclude $\lim _{k \rightarrow \infty} x_{m_{k}}=a$, done.
On the other hand, to show $b \leq a$ it suffices to show $c \leq a$ for any limit point c. Let $c=\lim _{n_{k} \rightarrow \infty} x_{n_{k}}$ be such a limit point. For $\varepsilon>0$, there is some $n_{k_{0}}$ such that $c-\varepsilon<x_{n_{k}}$ for all $n_{k} \geq n_{k_{0}}$. As $x_{k} \leq z_{k}$ for all k, we have $c-\varepsilon \leq x_{n_{k}} \leq z_{n_{k}}$. Letting $k \rightarrow \infty$, $a=\lim _{n_{k} \rightarrow \infty} z_{n_{k}} \geq c-\varepsilon$. Since $\varepsilon>0$ is arbitrary, $a \geq c$. Taking sup over c, we get $a \geq b$.

Now it is easy to show
Theorem 6.3. Let $\left\{x_{n}\right\}$ be a bounded sequence. Then

1. $\underline{\lim }_{n \rightarrow \infty} x_{n} \leq \varlimsup_{n \rightarrow \infty} x_{n}$,
2. $\left\{x_{n}\right\}$ is convergent iff $\underline{\lim }_{n \rightarrow \infty} x_{n}=\varlimsup_{\lim }^{n \rightarrow \infty}$ x_{n}. When this holds, $\lim _{n \rightarrow \infty} x_{n}=\underline{\lim }_{n \rightarrow \infty} x_{n}$.
