
MATH2050C Assignment 5

Deadline: Feb 20, 2024.

Hand in: 3.4 no 7; 3.5 no 3, 5, 9; Supp Ex no. 1.

Section 3.4 no. 4, 6, 8, 9, 11.

Supplementary Problems

1. Can you find a sequence from [0, 1] with the following property: For each x ∈ [0, 1], there
is subsequence of this sequence taking x as its limit? Suggestion: Consider the rational
numbers.

2. Recall that for a ≥ 0, E(a) = limn→∞(1 + a/n)n is well-defined. Show that for a rational
a > 0, E(a) = ea.

3. Let {xn} be a positive sequence such that a = limn→∞ xn+1/xn exists. Show that

limn→∞ x
1/n
n exists and is equal to a.

4. Show that limn→∞
n

(n!)1/n
= e.

5. The concept of a sequence extends naturally to points in RN . Taking N = 2 as a typical
case, a sequence of ordered pairs, {an},an = (xn, yn), is said to be convergent to a if, for
each ε > 0, there is some n0 such that

|an − a| < ε , ∀n ≥ n0 .

Here |a| =
√

x2 + y2 for a = (x, y). Show that limn→∞ an = a if and only if limn→∞ xn = x
and limn→∞ yn = y.

6. Bolzano-Weierstrass Theorem in RN reads as, every bounded sequence in RN has a con-
vergent subsequence. Prove it. A sequence is bounded if |an| ≤ M, ∀n, for some number
M .
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Bolzano-Weierstrass Theorem

Theorem 5.1 (Nested Interval Theorem). Let Ij = [aj , bj ], j ≤ 1, be a sequence of closed
intervals satisfying Ij+1 ⊂ Ij . Then

⋂
j Ij = [a, b] where a = supj aj and b = infj bj . In

particular, the intersection of all Ij ’s are nonempty.

We refer to the Text for a proof, which is based on Monotone Convergence Theorem.

Theorem 5.2(Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent
subsequence.

Our proof is slightly different from the second proof in Text.

Proof. Let {xn} be a bounded sequence. Assume that it has infinitely many distinct points.
(If not, the sequence is a finite set {a1, a2, · · · , aM} one aj ’s must repeatedly appear infinitely
many times. You can choose this point to form a constant subsequence.) Fix a closed, bounded
interval I0 containing the sequence. We divide I0 equally into two closed subintervals. Since
the sequence has infinitely xn’s, one of these subintervals must contain infinitely many of them.
Pick and call it I1. Next, we divide I1 equally into two closed subintervals and apply the same
principle to pick I2. Repeating this process, we end up with closed intervals Ik, k ≥ 1, with
the properties: For k ≥ 1, (a) Ik+1 ⊂ Ik, (b) the length of Ik+1 is half that of Ik, and (c)
there are infinitely points from {xn} sitting inside each Ik. Applying Nested Interval Theorem,
∩∞k=1Ik = {x}. Now, we pick one {xnk

} from each Ik to form a subsequence. This is possible
because there are infinitely many xn’s in each Ik. Clearly, {xnk

} converges to x.

A point a is called a limit point of the sequence {xn} if it is the limit of some subsequence
of {xn}. A bounded sequence has at least one limit point according to Bolzano-Weierstrass
Theorem. A properly divergent sequence does not have any limit point. This following theorem
is the same as Theorem 3.4.9 in Text.

Theorem 5.2. A bounded sequence is convergent if all its convergent subsequences have the
same limit.

Proof. Assume that there is only one limit point x. Suppose on the contrary that the sequence
does not converge to x. We can find some ε0 > 0 and nk → ∞ such that |xnk

− x| ≥ ε0.
Since {xnk

} is bounded, it contains a subsequence {xnkj
} which converges to some y satisfying

|y − x| = limj→∞ |xnkj
− x| ≥ ε0. Since any subsequence of a subsequence is a subsequence of

the original sequence, {xnkj
} is again a subsequence of {xn}. Thus y is a limit point different

from x, contradiction holds.

Let {xn} be a bounded sequence. For each n ≥ 1, the number

zn = sup
k≥n

xk = sup{xn, xn+1, xn+2, · · · } ,

is a number. It is clear that {zn} is decreasing and bounded from below. By Monotone Con-
vergence Theorem, its limit exists. We call it the limit superior of the sequence of {xn}. In
notation,

limn→∞xn = lim
n→∞

zn = inf{zn} = inf
n

sup
k≥n

xk .

Similarly, the number
wn = inf

k≥n
xk = inf{xn, xn+1, xn+2, · · · } ,
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is a number. It is clear that {wn} is increasing and bounded from above. By Monotone Con-
vergence Theorem, its limit exists. We call it the limit inferior of the sequence of {xn}. In
notation,

limn→∞xn = lim
n→∞

wn = sup{wn} = sup
n

inf
k≥n

xk .

Theorem 6.2. For a bounded sequence, its supremum is its largest limit point and its infimum
the smallest limit point.

The following proof may be skipped in a first reading.

Proof *. Let b be the supremum of all limit points of {xn} and a = lim supn xn. First, we
claim that a is itself a limit point. Hence a ≤ b. To do this we need to produce a subsequence
convergence to a. For ε = 1, there is some n0 such that |zn−a| < 1 for all n ≥ n0. In particular,
|zn0 − a| < 1. Since zn = sup{xn, xn+1, xn+2, · · · , }, for the same ε = 1, there is some m0 ≥ n0

such that |xm0 − zn0 | < 1. Next, by the same reasoning, for ε = 1/2, there is some n1 > n0

such that |zn1 − a| < 1/2 and m1 ≥ n1 such that |zn1 − xm1 | < 1/2. Continuing this, we obtain
znk

and xmk
where nk and mk are strictly increasing which satisfy |znk

− a|, |znk
− xmk

| < 1/k.
Therefore,

|xmk
− a| ≤ |xmk

− znk
|+ |znk

− a| < 1

k
+

1

k
=

2

k
.

Letting k →∞, by Squeeze Theorem we conclude limk→∞ xmk
= a, done.

On the other hand, to show b ≤ a it suffices to show c ≤ a for any limit point c. Let
c = limnk→∞ xnk

be such a limit point. For ε > 0, there is some nk0 such that c − ε < xnk

for all nk ≥ nk0 . As xk ≤ zk for all k, we have c − ε ≤ xnk
≤ znk

. Letting k → ∞,
a = limnk→∞ znk

≥ c− ε. Since ε > 0 is arbitrary, a ≥ c. Taking sup over c, we get a ≥ b.

Now it is easy to show

Theorem 6.3. Let {xn} be a bounded sequence. Then

1. limn→∞xn ≤ limn→∞xn,

2. {xn} is convergent iff limn→∞xn = limn→∞xn. When this holds, limn→∞ xn = limn→∞xn.


